Earlier this summer, I posted about the extreme heat wave challenging the Pacific Northwest. The summer has brought a myriad of challenges around the Northern Hemisphere. From flooding in Europe to wildfires across the West, severe weather and changing climate patterns continue to strain electric power grid operators tasked with keeping lights on in homes, businesses and critical facilities. In the utility world, the term “resiliency” is offered daily as the goal. “Keep the power grid resilient.” Distributed energy resources (DERs) play a critical role in achieving these targets in two complementary ways. At the risk of sounding pedantic, we need to address reliability at the grid level and resiliency at the end customer site.
Reliability & Resiliency: The reality is—we need both.
Topics: distributed energy resources, DERs, DERMs, virtual power plant, grid stability, grid resiliency, resiliency as a service, power outage
Managing Peak Demand and Resiliency Through Grid Modernization in the Pacific Northwest
Peak demand is the highest rate of electricity use. Fortunately, it only occurs a few times a year – usually on the hottest days of the year or on the very coldest days of the year, depending on your geography. Our power systems are prepared for these peaks (otherwise we risk potential blackouts), but as urban populations increase, and we add more variable renewable energy resources to our grid, we see more need to accommodate increases in peak demand. Traditionally, utilities would forecast demand in their service territories and resort to upgrading or building new peaking power plants to supply the anticipated increase in electricity demand. This solution tends to be land-intensive and has resulted in significant increases in greenhouse gas emissions.
Topics: grid balance, Peak Demand Management, Grid Modernization, grid stability